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Abstract. An ansatz is proposed for the time correlation C(t) = 〈F̂ exp(−iL̂t)F̂ 〉0 of a non-
conserved phase function F̂ , where L̂ is the Liouville operator and the brackets denote an
equilibrium canonical average. The new expression decays exponentially as t → ∞ and reduces
to a series in powers of t2 as t → 0, agreeing with a finite, arbitrarily chosen, number of terms
in an exact t-expansion. The ansatz takes the form of a series shown to converge absolutely and
uniformly. Its time integral can be fitted to experiment or to a computer simulation by adjusting the
decay constant characterizing the long-time behaviour. If the decay constant is sufficiently large,
the new model yields results of an order of magnitude consistent with the often-used exponential
decay model.

1. Introduction

The system to be considered here is a monatomic fluid of N point particles described by a
Hamiltonian Ĥ (x) dependent on the phase coordinates x. If F̂ (x) is a continuous integrable and
differentiable function odd under inversion in momentum space and even under configuration
inversion, we are concerned with the equilibrium time correlation (L̂ is the Liouville operator),

C(t) ≡ Z−1
∫

exp(−βĤ )F̂ (x) e−iL̂t F̂ (x) dx ≡ 〈F̂ e−iL̂t F̂ 〉0 (1)

with β ≡ 1/κT , where κ is the Boltzmann constant and Z is the canonical partition function.
The subscript zero will, in what follows, denote an equilibrium canonical average. If F̂ (x)

is the heat or diffusion flux, which have the parity we are postulating under inversion, the
thermal conductivity [1] or diffusion coefficient [2–4], respectively, are proportional to the
time integral of C(t).

To integrate C(t) over an infinite time interval, one usually uses an analytical model which
can be fitted to available information from experiment or molecular dynamics. The simplest
model proposed [5] is a decaying exponential. Efforts [6, 7] to fit such an exponential to the
velocity autocorrelation are contradicted by molecular dynamics [8], which reveals a long-
time tail falling off as t−d/2 as t → ∞, where d is the system dimensionality. Thus if C(t)

is to decay exponentially at long times, we should take F̂ to be non-conserved. This property
applies in the case of heat and diffusion flows and will be assumed in what follows.

A primary reason for taking C(t) to be exponential at long times stems from the successful
use of such a model in non-equilibrium thermodynamics. Define

〈F̂ 〉 ≡
∫

ρ(t) F̂ dx (2)
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where ρ is the solution of the Liouville equation. A formalism of Robertson [9] has been
used [10, 11] to derive from the Liouville equation an evolution equation which, in the linear
approximation, is

∂〈F̂ 〉/∂t = −(1/τ)〈F̂ 〉 (3a)

τ =
∫ ∞

0
C(t) dt/〈F̂ 2〉0. (3b)

Equation (3a) is exact if 〈F̂ 〉, N and T are the only quantities for which we extract measured
information in an experiment to be analysed. Equation (3b) is consistent in the case of heat flow
with the fluctuation–dissipation theorem [11, 12]. If a driving force is added to the right-hand
member of (3a), then in a steady state 〈F̂ 〉 will be proportional to this force with a transport
coefficient proportional to τ and thus to the integral of C(t).

Equation (3b) will be satisfied if

C(t) = 〈F̂ 〉0 exp(−t/τ ). (4)

This is the Onsager fluctuation–regression hypothesis, which postulates that a spontaneous
fluctuation in F̂ will decay with the same relaxation time as 〈F̂ 〉. This hypothesis has
been invoked [13] to derive the Onsager reciprocity relations of classical non-equilibrium
thermodynamics. Onsager symmetry has been found [10] in linear extended thermodynamics
which [14] includes variables such as 〈F̂ 〉, which are dissipative fluxes in the classical
formalism. This statistical result is consistent with supposing that the fluctuation–regression
hypothesis is valid in the linear extended domain,

If (4) is valid at timescales of classical non-equilibrium thermodynamics, e.g. in the domain
of ultrasonic frequencies (ω � 1 MHz), it certainly does not hold as t → 0. Expanding (1) in
powers of t , we find, after n partial integrations in the term O(t2n):

a0(t) ≡ νC(t) =
∑
n�0

(1/2n!)(−)nc̃nt
2n (5a)

ν = (〈F̂ 2〉0)
−1 (5b)

c̃n ≡ ν〈{(iL̂)nF̂ }2〉0 c̃0 = 1. (5c)

We shall assume in what follows that the expansion (5a) converges over a finite interval
0 � t � ta . There is no a priori reason to suppose ta < ∞, but convergence over an infinite
time interval is not necessary. From (1), we see that

∂C(t)/∂t →
t→0

−〈F̂ iL̂F̂ 〉0 = 0 (6)

which vanishes from the inversion symmetry of F̂ . Equations (5a) and (6) are consistent if
(5a) can be differentiated term by term. However, equations (5a) and (6) are not consistent
with the Maclaurin expansion of (4).

The statistical derivation [10] of (3b) shows that τ is time dependent as t → 0. The
usual formulation of extended thermodynamics, in which the coefficients have no explicit time
dependence, is recovered [15] only for t → ∞. In a formalism which seeks to improve on (4),
we need an ansatz which agrees with (5a) as t → 0 and which is approximately exponential
at long times where the exponential model has worked well in the linear phenomenology.

In the following section we shall introduce a scheme proposed by Lee [16], whereby the
sum in (5a) is replaced by an approximation which agrees with the exact series (5a) to an
arbitrary finite number of terms. {c̃k} in the exact series may be imagined to be found by
molecular dynamics. In section 3, we propose an ansatz which agrees with the approximate
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Lee model developed in section 2 for a0(t) at short times and which decays exponentially as
t → ∞. The exponent y1 at long times can be determined, as shown in section 4, so that (3b)
holds when the ansatz of section 3 is introduced under the integral sign, with τ determined
from experiment or computer simulation. It is found in section 4 that, if the computer value
of τ is not too long, there exists a value of y1 consistent with τ ∼ y−1

1 , so that the model of
section 3 can give, to a good approximation, the same value of τ as does (4). In section 5 we
discuss the role of the model of section 3 in bridging the short- and long-time behaviour of
C(t). Higher terms in the ansatz for C(t) describe the transition from short-time behaviour
of (5a) to long-time exponential decay. In practice, the time domain of this transition is so
short that we do not actually observe the cross-over. Furthermore, the memory of short-lived
correlations may be lost in the transition region. If that happens, an ansatz exact in this region
would not reproduce the observations if the relevant measurements could be made.

2. Lee model and arguments against exponential behaviour

The Lee approach [16, 17] defines an orthogonal basis set {fj (x)}, which spans the Hilbert
space of

F(t) ≡ exp(−iL̂t)F̂ =
∑
j�0

aj (t) fj . (7)

{aj (t)} and {fj (t)} satisfy the recurrence relations [16, 17]

�j+1aj+1 = −ȧj (t) + aj−1(t) (j � 0) (8a)

�j ≡ 〈f 2
j 〉0/〈f 2

j−1〉0 (j > 0) (8b)

fj+1 = iL̂fj + �jfj−1 f−1 = 0 f0 = F̂ . (8c)

{�j } are the constants in a continued fraction representation of a0(ω) = νC(ω), where a0(ω)

is the Fourier ω-transform of a0(t). The coefficients (cf equation (5a))

cn ≡ {1/(2n)!}(−)nc̃n (n � 0) (9a)

c0 = 1 (9b)

can be expressed in terms of {�n}. Thus [16]

c1 = − 1
2�1 (10a)

c2 = (1/4!)�1(�1 + �2) (10b)

c3 = −(1/6!)�1{(�1 + �2)
2 + �2�3} (10c)

c4 = (1/8!)�1{(�1 + �2)
3 + �2�3(�1 + �2) + �2�3(�1 + �2 + �3 + �4)}. (10d)

Each cn depends on �j for 1 � j � n. If the first a − 1 cj -coefficients are determined
accurately by computer simulation, then the first a − 1 �j are also calculable from (10a)–
(10d) and subsequent equations in this set. If we set fn+1 = 0 = �n+1 in (8c), all fj and �j

for j > n are zero. Then equations (8c) yield an equation for f0 for the solution of which
the n values of �1, . . . , �n are boundary conditions. f0 no longer equals F̂ . This procedure
yields an approximation to (5a) in which the first n + 1 terms are exact, with the rest being
calculated from (10a)–(10d) plus additional equations representing an extension of this set in
which �p = 0 for p > n. The first n + 1 terms are exact, and so νC(t) is accurate as t → 0.
In the ansatz of section 3, νC(t) to O(t2) as t → 0 and as t → ∞ is determined by �1 and
�2 plus the exponent y1 characterizing decay at very long times. Since it is for long times
and low (∼1 MHz) frequencies that we usually make measurements, an approximate theory
in which a finite number of {�j } are accurate and the rest zero should fit our observations.
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2.1. Proof that C(t) is not exactly exponential

Referring to (7) for the definition of F(t), we have [16]

〈F(t) F (t)〉0 = 〈F̂ 2〉0 (11)

since 〈e−iL̂t F̂ e−iL̂t F̂ 〉0 = 〈F̂ eiL̂te−iL̂t F̂ 〉0. To see this, expand exp(−iL̂t)F̂ inside the angular
brackets in powers of t and integrate by parts. If a0(t) = νC(t) = exp(−γ t), then (8a)
implies aj = uj exp(−γ t) for all j � 1. Then from (7) F(t) decays as exp(−γ t), which is
incompatible with (11). Therefore [16], C(t) cannot be exactly exponential at any t unless
external fields have intervened at earlier times to modify the dynamics. Thus the model of
section 3, as we shall see, may become effectively an exponential, to a high degree of accuracy,
as t → ∞ only if memory of short-lived correlations is lost in the long-time limit.

2.2. Lee model with finite basis set

We have stated that, for a suitably chosen f0, all the basis functions fj for j > n, where n is
an arbitrarily chosen integer �1, can be made to vanish. To show explicitly how this is done,
set j + 1 = p in (8c) and use equations (8c) successively to yield

fp = iL̂fp−1 + �p−1fp−2 = (iL̂)2fp−2 + (�p−1 + �p−2)iL̂fp−3 + �p−1�p−3fp−4. (12)

This process can be iterated until the right-hand member involves only f0 and its derivatives.
Thus,

f1 = iL̂f0 (13a)

f2 = (iL̂)2f0 + �1f0 (13b)

f3 = (iL̂)3f0 + (�1 + �2)iL̂f0 (13c)

f4 = (iL̂)4f0 + (�1 + �2 + �3)(iL̂)2f0 + �1�3f0 (13d)

f5 = (iL̂)5f0 + (�1 + �2 + �3 + �4)(iL̂)3f0 + iL̂f0{�1�3 + �4(�1 + �2)}. (13e)

Similar equations, expressing fn in terms of f0 and its derivatives, can be derived for arbitrary
positive n. Equating to zero the expression for fn+1, we obtain an equation for f0 which,
according to (8c), is consistent with fn+p = 0 = �n+p (all positive integers p). We
shall suppose that f0 can be determined as the solution for the equation fn+1 = 0, subject
to boundary conditions specifying the values of �1, . . . , �n. These values are calculated
from exact, computer-generated values of c1, . . . , cn. The calculation uses (10a)–(10d) and
additional equations which may be added to that set. The exact values are calculated for the
time correlation of F̂ , although f0, calculated from the result of setting fn+1 = 0, no longer
equals F̂ . We have, however, a model for the time correlation of F̂ which should be valid at
short and long times. If the equation for f0 cannot be solved subject to the specified boundary
conditions, we still have a model, but it is ad hoc and does not fit into the scheme of Lee.

2.3. Convergence condition derived from a truncated Lee model

For illustrative purposes, we shall suppose that f0 is the solution of the equation obtained by
setting f5 = 0 in (13e). The latter equation is presumed to have a solution such that �1, . . . , �4

are non-vanishing and agree with exact values calculated from (10a)–(10d), with the cj being
computer values for the t expansion of C(t) for the function F̂ whose time correlation we seek
to approximate. The remaining cs in (5a) are replaced by values calculated from the truncated
model. To prove that, after this replacement the modified expansion (5a) converges, we need
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an inequality satisfied by the {c∗
n} in (5a), where the asterisk denotes values calculated from

the truncated model.
Since the truncation model is set up to make f4+p = 0 = �4+p for all positive integers p,

we obtain by successive applications of (8c):

0 = f4+p = (iL̂)f4+p−1 + �4+p−1f4+p−2

= (iL̂)2f4+p−2 + �4+p−2f4+p−3 = (iL̂)pf4 + �4f3 (p > 1). (14)

Multiplying (14) by f0, integrating over phase space, and substituting for f4 from (13d), we
obtain

0 = 〈f0(iL̂)pf4〉0 = 〈f0(iL̂)p+4f0〉0 + 〈f0(�1 + �2 + �3)(iL̂)p+2f0〉0

+�1�3〈f0(iL̂)pf0〉0. (15)

Here we have used the orthogonality of {fj }, i.e. 〈fpfr〉0 = 0 if r �= p [16].
Now put p = 2r , for r an integer �1, in (15) and integrate partially. We have

〈f0(iL̂)2rf0〉0 = (−)r〈{(iL̂)rf0}2〉0 = (−)r c̃∗
r . (16)

Treating in a similar fashion all three terms in (15), we obtain

c̃∗
r+2 = (�1 + �2 + �3)c̃

∗
r+1 − �1�3c̃

∗
r (r � 1). (17)

Taking into account (10a) and (10b), which assert that c̃0 = 1 = c̃∗ and that c̃2 =
�1(�1 + �2) = c̃∗

2, we have

c̃∗
j+1 � (�1 + �2 + �3)c̃

∗
j (j � 0). (18)

If, as supposed above, a = 4 is the largest p such that �p �= 0 and �̄ = max(�1, �2, �3),
we have from (18) (cf equation (9a))

c̃∗
j+1 � (a − 1)�̄c̃∗

j (j � 0) (19a)

|c∗
j+1| ≡ [{2(j + 1)}]−1|c̃∗

j+1| < {(a − 1)�̄/(j + 1)}|c∗
j |. (19b)

From (19b) it follows that, for arbitrary, real, positive y1 and int(z), the smallest integer � z:

|c∗
j+1| < y2

1 |c∗
j | if j + 1 � int {(a − 1)�̄/y2

1 } ≡ j̄ + 1. (20)

Equation (20) is the fundamental inequality needed to prove convergence in (5a) when
the truncation model is used to calculate the {cn} in that equation, i.e. after replacement of c̃n

by c̃∗
n. Denoting by a∗

0 the result of replacing c̃n by c̃∗
n in (5a), we have

a∗
0 � Sj̄ +

∑
n�j

|c∗
n|(y1t)

2n � Sj̄ + |c∗
j |(y1t)

2j̄ {1 − (y1t)
2}−1 (y1t < 1) (21)

where Sj̄ is the sum of the first j̄ terms in a∗
0(t). Equation (21) shows that, when the truncation

model is used to calculate {c̃n}, equation (5a) converges absolutely as t → 0, i.e. for t < y−1
1 .

In section 3, we shall let y1 be the exponential decay constant of C(t) as t → ∞ and show that
(20) can be used to prove convergence of the ansatz introduced there and of its time integral.
The parameters of the ansatz are evaluated to make it agree with a∗

0(t) as t → 0 and to make
it consistent with (3b) when τ is determined independently, e.g. by computer simulation.
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3. New ansatz fitted to the truncated Lee model and to long-time exponential decay

As indicated in the previous section, we seek to replace (4) with an ansatz which agrees exactly
with terms out to n = 4 in (5a) as t → 0, with the {c̃j } replaced by {c̃∗

j } calculated from the
truncated Lee model in which f5 = 0. These {c̃∗

j } obey (14)–(18) and satisfy the inequalities
(19a) and (20). Inequality (20) can be used to prove convergence of the sum:

ab
0(t) =

∞∑
p=1

bpt2p−2 sech(py1t) (22)

where the {bp} are determined to make the Maclaurin expansion of (22) agree identically with
a∗

0(t). Equation (22) defines the new model which is exact as t → 0, since the first five terms
of a∗

0 are exact, whilst the model decays exponentially at long times. The superscript b denotes
an approximation to a0(t) = νC(t).

As t → ∞ (22) gives

a0(t) →
t→∞ 2b1 exp(−y1t). (23)

To determine y1, we substitute (22) into (3b) and adjust y1 so that (3b) fits a τ obtained from
molecular dynamics or from experiment. For this it is necessary to prove convergence of the
infinite time integral of (22) which is done in section 4. If y1 ∼ τ , as suggested by the Onsager
fluctuation–regression hypothesis, then since τ is usually ∼10−9 s when 〈F̂ 〉 is a typical fast
variable of extended thermodynamics [18, 19] the interval 0 � t < y−1

1 for which convergence
of a∗

0 is proved in (21) will exceed the duration of most experiments.

3.1. Evaluation of the bp coefficients in the ansatz

As observed above, we expand (22) in a Maclaurin series in powers of t and determine the
coefficients {bp} to make the coefficient of t2n in the expansion of (22) equal c∗

n. The {c∗
n} used

here are obtained from the truncation model which assumes fj = 0 = �j for j � 5, and thus
c∗
n for n > 4 is calculated from (17). Only c∗

0, . . . , c∗
4 agree exactly with the {cn} in (5c). This

is sufficient to make (22) agree with (5a) and (5c) to O(t8) as t → 0.
The condition that the coefficient of t2n in the Maclaurin expansion of (22) equals c∗

n is

c∗
n =

n+1∑
m=1

bn(my1)
2(n+1−m)E2(n+1−m)/{2(n + 1 − m)}!. (24)

{Ek} here are the Euler numbers [20, chapter 23] which appear in the t-expansion of the
hyperbolic secants. In (24), we use [20, section 23.1.15]

(−)nE2n = (4n+1/π2n+1)(2n)!γn (n = 0, 1, . . .) (25a)

1 > γn > [1 + 3−1−2n]−1. (25b)

Defining

c̄n ≡ (−)nc∗
n(π

2/4)ny−2n
1 (26a)

b̄n ≡ (−)n−1bn(ny1)
2(1−n)4π−1(π2/4)n−1 (26b)

we find that (24), after substitution from (25a), reduces to

c̄n =
n+1∑
m=1

b̄mm2nγn+1−m. (27)
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The {γj } here can be calculated from (25a) using tabulated values of the {E2n} [20, table 23.2]
for j < 30, and γj

∼= 1 for large j .
As remarked above, the set {c∗

n} are being calculated according to (17) from the truncation
model. Therefore, {c∗

n} satisfy (18). Accordingly, from (20),

|c∗
j+1| � y2

1 |c∗
j | (j � j̄ ). (28)

Equation (28) implies

|c∗
j | � y

2(j−j̄ )

1 |c∗
j̄
| (j > j̄). (29)

Now if

ζ ≡ max
j�j̄

(|c∗
j |/y2j

1

)
(30)

we have

|c∗
j | � ζy

2j

1 (j � 0). (31)

Referring to definition (26a), we have

|c̄j | � y
2j

1 (π2/4)j y
−2j

1 ζ = ζ(π2/4)j (all j). (32)

This is the form in which we cast (20) in order to prove convergence of (22).
Having shown that the set {b̄n} should satisfy (27), we can now use (27) and (32) to

establish upper limits on the coefficients {bp} in (22), and these limits may be invoked to prove
convergence of (22). Upper limits on {|bn|} are obtained by applying induction to (27). We
show first that |b̄1| and |b̄2| are less than limiting expressions indexed by k (k = 1, 2), to be
established, and then prove that if these limits apply to |bp| for 1 � p < n, then they hold for
|bn|.

Taking successively n = 0, 1 in (27), we find

c̄0 = 1 = b̄1γ0 (33a)

c̄1 = b̄1γ1 + 4b̄2γ0 (33b)

γ0 and γ1 in (33b) can be evaluated from (25a) with tabulated values E0 = 1 = −E2 which
gives

γ0 = E0(π/4) = π/4 (34a)

γ1 = −E2(π
3/32) = π3/32. (34b)

On using (34a) and (34b) in (33a) and (33b), we obtain

b̄1 = 4/π (35a)

b̄2 = (1/π){c̄1 − (π2/8)}. (35b)

From (32) and (35b), if ζ < π/2, |b̄2| < π2/8. If ζ � π/2, |b̄2| < ζπ/4 if b̄2 > 0
and |b̄2| < π2/8 if b̄2 � 0. In both the latter cases, |b̄2| < ζπ/4. These conclusions are
summarized by

|b̄p| � (4ζ̄ /π)(π2/16)p−1 < (4ζ̄ /π)(π2/4)p−1 (p = 1, 2) (36a)

ζ̄ = ζ if ζ � π/2 ζ̄ = π/2 if ζ < π/2. (36b)
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Having shown that (36a) holds for p = 1, 2, we make the inductive assumption that (36a)
holds for all p < n. Taking n � 3, we find that (25b) and (27) imply

|b̄n| � n−2(n−1)

[
|c̄n−1| +

n−1∑
m=1

m2(n−1)|b̄m|
]
. (37)

Here we have solved (27) for |b̄n| and then set γn → 1 (an upper limit) and have replaced all
terms on the right by their absolute values to obtain an upper limit. Into (37) we introduce the
inductive assumptions based on (32) and (35a):

|c̄j | � ζ̄ (π2/4)j < ζ̄ (4/π)(π2/4)j (1 � j � n − 1) (38a)

|b̄j | � (4ζ̄ /π)(π2/4)j−1 (1 � j � n − 1). (38b)

Introducing (38a) and (38b) into (37), we find

|b̄n| � n−2(n−1)ζ̄ (4/π)

[
(π2/4)n−1 +

n−1∑
m=1

(π2/4)m−1

]

= n−2(n−1)(4ζ̄ /π)(π2/4)n−1{1 − (4/π2)n}/{1 − (4/π2)}
< n−2(n−1)(4ζ̄ /π){1 − (4/π2)}−1(π2/4)n−1. (39)

If n � 3, equation (39) implies that

|b̄n| < n−2(n−1)(π2/4)n−1, (n � 3) (40a)

, ≡ ζ̄ (2.140 92 . . .). (40b)

Equation (40a) shows that if (38b) holds for 1 � j � n − 1, then it holds for j = n and
therefore, by induction, for all integers j � 0.

Equations (40a) and (26b) yield a limit for |bn|
|bn| = |b̄n|(ny1)

2(n−1)(π/4)(4/π2)n−1 < y
2(n−1)
1 (π/4),. (41)

To prove convergence of (22) for t > 0, we use (41) and the inequality

sech(py1t) � 2 exp(−py1t) (p � 0). (42)

Equations (41) and (42) imply that

|bp| sech(py1t) < y
2(p−1)

1 (π/2), exp(−py1t). (43)

Introducing (43) into the sum of absolute values of the terms in (22), we have

ab
0(t) <

∞∑
p=1

(y1t)
2(p−1) exp(−py1t)(π/2), (44)

where ab
0 denotes the sum in (22). This sum converges, since if y ≡ y1t , we have

y2pe−py = exp{−p(y − 2 ln y)} ≡ Mp.

The minimum of y − 2 ln y occurs at y = 2 where 2 − ln 4 = 0.6137 . . . . The sum in (44) is
less than a sum of powers of exp(−0.6137) which converges. Therefore, equation (22) will
converge absolutely for all t � 0. The convergence is uniform by the Weierstrass M-test since∑

p Mp converges. Therefore, we can integrate (22) term by term as we do in the following
section.
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4. Time integral of the new model and determination of y1

If νC(t) from (22) is substituted into (3b) and the resulting expression after term-by-term
integration converges, we can adjust y1 to make the model agree with, for example, a molecular
dynamics determination of τ , the relaxation time for 〈F̂ 〉 (cf equations (3a) and (3b)). If the
exponential model of (4) produces a good representation of νC(t) at long times, the infinite
time integral of (22) should predict τ ∼ y−1

1 .

4.1. Integration of the ansatz for C(t)

Referring to the term of order p in (22) and defining z ≡ py1t , we have∫ ∞

0
t2p−2 sech(py1t) dt = {2/(py1)

2p−1}
∫ ∞

0
z2p−2e−z[1 − e−2z + e−4z − · · ·] dz

= {2/(py1)
2p−1}(2p − 2)![1 − 31−2p + 51−2p − 71−2p + · · ·]

= {2/(py1)
2p−1}(2p − 2)!β(2p − 1). (45)

The function β(n) is defined and discussed by Abramowitz and Stegun [20, section 23.2.22]
where it is related to the Euler numbers {E2n}. We have from [20],

β(n) ≡
∞∑

k=0

(−)k(2k + 1)−n (n = 1, 2, . . .) (46a)

β(2n + 1) = {(π/2)2n+1/2(2n)!}|E2n| (n = 0, 1, . . .). (46b)

Substituting from (46b) into the result of integrating (22) term by term and using (45), we
obtain

τ =
∑
p�1

(π/2py1)
2p−1|E2p−2|bp. (47)

To demonstrate absolute convergence of the sum in (47), we replace bp → |bp| and use
(41) to obtain an upper limit on |bp|. To obtain an upper limit on |E2p−2|, we use (25a) and
replace γn by unity. Applying these limits to the sum of the absolute values of the terms in
(47), we have

τ < (π/2y1),
∑
p�1

(2p − 2)!p2p−1. (48)

Applying Stirling’s approximation,

(2p − 2)! ∼ 22p−2p2p−2 exp(−2p + 2)

to (48), we obtain

τ � (π/2y1),
∑
p�1

p−14p−1 exp{−2(p − 1)} (49)

where , is defined in (40b). The terms in the sum in (49) are less than the corresponding
terms in a geometric series in powers of 4/e2 which converges. Therefore, we conclude that
(47) converges absolutely.
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4.2. Evaluation of τ

Since (47) converges, it should be possible to use this equation to determine y1. This
determination should be effected by adjusting y1 so that (47) agrees with an independent
determination of τ via molecular dynamic evaluation of the correlation in (3b) or from
experiment. In an experimental measurement of steady-state transport, a thermodynamic
force X (e.g. a temperature or concentration gradient) is applied to the system, and then a
driving term −(ϒ/τ)X is added to the right-hand member of (3a) [18, 19]. ϒ is the measured
steady-state transport coefficient, and (ϒ, τ) can be determined [18, 19, 21] in certain cases
from molecular models with the help of an application of Onsager reciprocity. Reference [21]
reviews a number of examples.

If {|E2p−2|} are taken from tabulated values [20, table 23.2], we can write the first few
terms of (47) in the form

τ = (π/2y1)b1 + (π/4y1)
3b2 + (π/6y1)

55b3 + (π/8y1)
761b4 + · · · . (50)

The {bj }j�4 can be determined by solving (24) in which we use (10a)–(10d) for c1, . . . , c4.
We find

b1 = 1 (51a)

b2 = 1
2 (−�1 + y2

1 ) (51b)

b3 = 1
24 �̃�1 − �1y

2
1 + 19

24y4
1 (51c)

b4 = −(1/6!)�1{�̃2 + �2�3} + 1
2 (3y2

1 )b3 − 5
24 (2y1)

4b2 + (61/6)y6
1 (51d)

�̃ ≡ �1 + �2. (51e)

Equations (51a)–(51e) can be extended to bj for j > 4 after making a corresponding extension
of (10a)–(10d).

In the absence of molecular dynamic or reliable experimental determinations of τ , we can
use (50) to investigate for what values of τ there is a y1 (adjusted to fit τ ) compatible with
τ ∼ y−1

1 . This is the result we should obtain by putting τ = y−1
1 in (4) and substituting the

result into (3b). If from (50) we find that there is a τ such that (47) predicts that τ ∼ y1 then
for this value of τ the long-time behaviour of the ansatz (22) is consistent with the Onsager
fluctuation–regression hypothesis discussed in connection with (4) and widely used in non-
equilibrium thermodynamics [13]. However, this value of τ may not agree with a computer
evaluation of the correlation in (3b).

If we define ỹ1 ≡ y1/�
1/2
1 , we can cast (50) and (51a)–(51e) in the form

τ = (π/2y1)
[
1 + (π2/64)(1 − ỹ−2

1 ) + 5
72 (π/6)4{(�̃/�1)ỹ

−4
1 − 24ỹ−2

1 + 19}
+(π/4)6 61

256

{ − 1
720 (�̃2 + �2�3)/�

2
1ỹ

6
1

+ 9
48 (ỹ−4

1 �̃/�1 − 24ỹ−2
1 + 19) − 5

3 (1 − ỹ−2
1 ) + 61

720

}
+ · · · ]. (52)

If ỹ1 = 1 and (�̃/�1) = 5 and �3 = 0, this gives

τ = (π/2y1)
{
1 + (π/4)6

(
61

5120

)
+ · · · }

= (π/2y1)1.0028 ∼ y−1
1 . (53)

If �3 > 0 and ỹ1 > 1, this estimate of τ will increase, but (53) will continue to hold as to
order of magnitude. If ỹ1 < 1, convergence slows in (52), and this equation ceases to provide
a useful estimate, at least to the order included in (52).
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As we shall point out in the next section, {bj }j�2 characterize νC(t) in the transition region
between very short- and long-time behaviour. The latter, in the simple fluids postulated here, is
not directly observed because τ ∼ 10−9 s or less. If memory of short-lived correlations which
relax during this transition period is lost, then νC(t) may be given accurately by exp(−y1t) as
t → ∞ even if y1 differs from the value which causes (52) to fit the τ calculated from (4) by
molecular dynamics. The latter calculation does not provide for intervention of external fields
producing loss of memory.

5. Discussion

Although the exponential decay model (4) for C(t) is in accord with the Onsager fluctuation–
regression hypothesis for non-conserved variables, and the latter hypothesis has been very
successful in classical non-equilibrium thermodynamics [13, 22], equation (4) clearly fails as
t → 0, as shown in (6). A model for C(t) consistent with both the long-time phenomenology
and the short-time expansion in powers of t2 given in (5a) should exhibit a cross-over from
the behaviour of (5a) to an exponential decay at t → ∞.

The ansatz in (22) achieves this, since νC(t) → 1 + O(t2) as t → 0, and νC(t) →
2b1 exp(−y1t) as t → ∞. The coefficients {bp} in (22) are adjusted to make (22) agree with
(5a) to O(t2n) for a given finite n. For illustrative purposes we have taken n = 4 in the present
paper. {c̃p} in (5a) for p > 4 has been replaced by the coefficients {c̃∗

p} of the truncated Lee
model of section 2.4. The truncated model sets fp = 0 = �p for p > 4 with �p (p � 4) the
exact values consistent with a computer determination of cj (1 � j � 4) in (10a)–(10d) which
is used to calculate the �s from the cs. The truncated model leads to (20) which is invoked
to prove the convergence of (22) and its time integral. This model could be modified to the
case of truncation at some higher order p > 5. However, the behaviour of (22) as t → 0 is
determined by b1 and b2 and as t → ∞ by y1. All the terms in (22) save the first two describe
the cross-over region which covers such a short period that we can gain information about it
only via a computer simulation. If (15) does not have a solution consistent with the exact,
computer-generated values of �1, . . . , �4 as boundary conditions, we still have an ad hoc
model which fits the short- and long-time behaviour of C(t), but it no longer fits into the
systematic Lee formalism.

Whether a simulation of νC(t) in the cross-over region would agree with a measurement
if we could make one is an open question. If C(t), when F̂ is non-conserved, is exactly
exponential at long times, the arguments of Lee in section 2.1 show that external fields must
intervene during the cross-over to modify the dynamics. If such intervention destroys memory
of the shorter-lived correlations (p > 1) in (22) during the cross-over in which they relax,
then the exponential decay at long times may effectively be more exact than it appears to be in
(22). Thus, as far as comparison with actual laboratory measurements is concerned, nothing
is demonstrably gained by truncating at an order higher than p = 5 which has been chosen
here for illustrative purposes.

Success in fitting the exponential decay model at long times to a computer determination
of τ does not prove that C(t) actually decays exponentially as t → ∞. One simulation [7]
appeared to show exponential decay of the velocity autocorrelation function which was later
shown [18] to fall off as t−d/2. Without more convincing evidence from simulations using
non-conserved variables, equation (22) improves on (4) only by explaining how we can have
Ċ(t) → 0 as t → 0. The shorter relaxation frequencies in (22) do not all have to be integral
multiples of a single parameter y1. Equation (22) can be generalized if evidence is adduced
requiring this.
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